A dissipative Galerkin method applied to some quasilinear hyperbolic equations
نویسندگان
چکیده
— À nonstandard continuous-in-time Galerkin method, based on piecewise polynomial spaces, is applied io the periodic initial value problem for the équation ut = a(x, ty u)ux + ƒ(*, ty «). Under the condition that a(x, t, u) > «o > 0 for the solution, optimal order L error estimâtes are derived.
منابع مشابه
Global attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملDiscontinuous Galerkin Finite Element Approximation of Nonlinear Second-Order Elliptic and Hyperbolic Systems
We develop the convergence analysis of discontinuous Galerkin finite element approximations to second-order quasilinear elliptic and hyperbolic systems of partial differential equations of the form, respectively, − ∑d α=1 ∂xαSiα(∇u(x)) = fi(x), i = 1, . . . , d, and ∂2 t ui− ∑d α=1 ∂xαSiα(∇u(t, x)) = fi(t, x), i = 1, . . . , d, with ∂xα = ∂/∂xα, in a bounded spatial domain in R d, subject to mi...
متن کاملGALERKIN AVERAGING METHOD AND POINCARÉ NORMAL FORM FOR SOME QUASILINEAR PDEs
We use the Galerkin averaging method to construct a coordinate transformation putting a nonlinear PDE in Poincaré normal form up to a remainder of arbitrary order. The abstract theorem we obtain applies to quite general quasilinear equations in one or more space dimensions. Applications to nonlinear wave and heat equations are given. Dynamical consequences are obtained. Mathematics Subject Clas...
متن کاملStudy Of Thermoelastic Damping in an Electrostatically Deflected Circular Micro-Plate Using Hyperbolic Heat Conduction Model
Thermoelastic damping (TED) in a circular micro-plate resonator subjected to an electrostatic pressure is studied. The coupled thermo-elastic equations of a capacitive circular micro plate are derived considering hyperbolic heat conduction model and solved by applying Galerkin discretization method. Applying complex-frequency approach to the coupled thermo-elastic equations, TED is obtained for...
متن کاملThe Discontinuous Galerkin Method with Diffusion
We propose a way of extending the discontinuous Galerkin method from pure hyperbolic equations to convection-dominated equations with an 0(h) diffusion term. The resulting method is explicit and can be applied with polynomials of degree n > 1 . The extended method satisfies the same 0(hn+ll2) error estimate previously established for the discontinuous Galerkin method as applied to hyperbolic pr...
متن کامل